Es handelt sich hierbei um eine Waffe, die ein ferromagnetisches Geschoss mit Hilfe elektromagnetischer Kräfte beschleunigt. Zum Beschleunigen wird durch eine Spule vor dem Geschoss elektrischer Strom geleitet. Das dabei erzeugte Magnetfeld zieht das Geschoss an und beschleunigt es so ins Spulenzentrum. Jedoch muss hierbei das Magnetfeld wieder rechtzeitig abgeschaltet werden, bevor das Geschoss das Zentrum erreicht, andernfalls hat das Magnetfeld eine bremsende Wirkung (man stelle sich einen Pfeil vor, der mit der Sehne des Bogens verbunden bleibt). Durch das sequentielle Aktivieren von mehreren hintereinandergestellten Spulen lassen sich immer höhere Geschwindigkeiten erreichen (sog. Multistage Coilgun).
Der dazu notwendige kurze und sehr kräftige Stromimpuls wird meistens mit Hilfe von Kondensatoren erzeugt, die über die Spule kurzgeschlossen und somit schlagartig entladen werden. Problematisch ist hierbei das zeitlich exakte Abschalten der Spule und die Sättigungsmagnetisierung des Projektils. Designs, die den Spulenstrom gesteuert abschalten, wenn das Geschoss einen bestimmten Punkt erreicht hat, verfügen über Sensoren und eine Signalrückführung (closed-loop). Bei Anlagen, bei denen der Strom solange durch die Spulen fließt, bis der Energiespeicher erschöpft ist, wird der Ort des Projektils nicht detektiert, es liegt keine Signalrückführung vor (open-loop). Solche Anlagen funktionieren nur bei genauer Abstimmung der Projektilmasse auf die Stromkreise. Auch das ferromagnetische Material, aus dem das Geschoss besteht, beeinflusst die Magnetfelder der Spulen nichtlinear, was Berechnungen schwierig macht.
Wenn die elektrische Leitfähigkeit des Materials, aus dem das Projektil besteht, zu hoch ist, dann werden durch das sich verändernde Magnetfeld Wirbelströme im Projektil erzeugt. Diese Wirbelströme haben nicht nur eine bremsende Wirkung auf das Projektil, sondern sie erhitzen das Projektil auch durch Induktive Erwärmung. Sobald die Temperatur des Projektils die Curie-Temperatur des Materials aus dem das Projektil besteht, übersteigt (bei Eisen 768 °C), hört das Projektil auf, ferromagnetisch zu sein. Dadurch fällt die Vortriebskraft durch das Magnetfeld weg, während die Bremskraft durch die Wirbelströme weiter wirksam bleibt. Abhilfe besteht in der Verwendung von Ferriten mit geringer elektrischer Leitfähigkeit oder von lamelliertem oder gewickeltem Dynamoblech. Alternativ dazu kann elektrisch leitfähiges Material nach Erreichen des Curiepunktes nach dem Prinzip der induktiven Gaußkanone weiter beschleunigt werden.
Keine Kommentare:
Kommentar veröffentlichen